60 research outputs found

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Thio­nordazepam: strong inter­molecular N—H⋯N hydrogen-bonded chains

    Get PDF
    In the title compound, 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-thione, C15H11ClN2S, the central seven-membered diazepinethione ring adopts a boat conformation. The dihedral angle between the planes of the aromatic rings is 63.7 (1)°. The crystal packing is determined by strong N—H⋯N hydrogen bonds, generating a one-dimensional chain along [001]

    Resistance to late leaf spot and rust diseases in ICRISAT’s mini core collection of peanut (Arachis hypogaea L.)

    Get PDF
    Late leaf spot (LLS) (Phaeoisariopsis personata) and rust (Puccinia arachidis) are major foliar diseases of peanut causing significant losses worldwide. Identification and infusion of resistance into peanut cultivars is important in the management of these diseases. The present study therefore aimed at screening the peanut mini core collection to identify potential sources of resistance to these diseases. Two separate field experiments were conducted for screening LLS and rust under artificial epiphytotic conditions during rainy seasons of 2012 and 2013 at ICRISAT, Patancheru, India. The trials were laid in a randomized complete block design on beds with three replications. Data on LLS and rust disease severities were collected using 1 to 9 scales at 75, 90 and 105 days after sowing (DAS), and pod yields were recorded at harvest. Results indicate significant variations among accessions for LLS and rust resistance. Mean of 2 years study revealed that 53 accessions were moderately resistant (MR), 86 accessions were susceptible (S) and 45 accessions were highly susceptible (HS) to LLS. For rust disease, 10 accessions were resistant (R), 115 accessions were with ‘MR’ reaction and 59 accessions with susceptible (S) reaction. Six superior accessions in terms of combined disease resistance and yield (ICGs 4389, 6993, 11426, 4746, 6022, 11088) were selected and the disease progress curves, for each, were generated. Highest yields were recorded with ICG 11426 in LLS and rust plots. Overall, our results indicate that these six accessions can be potential sources of LLS and rust resistance

    Smallholder farmers involvement in seed production of pigeonpea : An assessment in Odisha, India

    Get PDF
    Smallholder pigeonpea farmers in Odisha always rely on self-saved seeds of preferred landrace with long maturity period of 7 months and exploiting this for a period of 2-4 years or more. These model of seed system continuously resulted in low yield (250-500 kg/ha) due to seed deterioration. Seed production at farmers’ level with the provision of new package of technology such as providing farmers preferred high yielding disease resistant varieties and hybrids, on the ground training on improved crop management technologies, and integrated pest and disease management has contributed in increase in productivity (780 kg/ha), improving livelihood, and income of farmers in the project sites (Rayagada, Kalahandi, and Nauparha). Institutionalizing the seed system model through the ‘one village one variety’ concept has brought about the production of 1610 tons of various certified seeds. The assessment also revealed that higher investment in seed production resulted in higher seed yield and income. Likewise, farmers seed growers with medium land classification showed the best B:C ratio with ` 3.38 per ` 1 invested. Moreover, it can be deduced from the B:C ratio of all land classification that seed production is economically viable for smallholder farmers to venture in improving their livelihoods. However, there are still limitations that need to be addressed to ensure the sustainability of the seed delivery system of the project. The most pressing constraint of pigeonpea production is the damage caused by pests and the lack of farm inputs; trainings/awareness meetings/exposures are required to educate farmers on new pigeonpea technologies; and the need to regulate prices of pigeonpea seeds is a major concern for smallholder farmers to obtain benefit from their pigeonpea cultivation

    A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool

    Get PDF
    Background: Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD. Objective: This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP 3 ) framework benefiting the pharmaceutical paradigm. Method: The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdge TM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers. Conclusions: Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdge TM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    DermAI 1.0: A Robust, Generalized, and Novel Attention-Enabled Ensemble-Based Transfer Learning Paradigm for Multiclass Classification of Skin Lesion Images

    Get PDF
    Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions

    Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review

    Get PDF
    Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    Get PDF
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review.

    Get PDF
    Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment
    corecore